
Two's Complement
Thomas Finley, April 2000

Contents and Introduction

◦ Contents and Introduction
◦ Conversion from Two's Complement
◦ Conversion to Two's Complement
◦ Arithmetic with Two's Complement
◦ Why Inversion and Adding One Works

Two's complement is not a complicated scheme and is not well
served by anything lengthly. Therefore, after this introduction,
which explains what two's complement is and how to use it, there
are mostly examples.

Two's complement is the way every computer I know of chooses
to represent integers. To get the two's complement negative
notation of an integer, you write out the number in binary. You
then invert the digits, and add one to the result.

Suppose we're working with 8 bit quantities (for simplicity's sake)
and suppose we want to find how -28 would be expressed in
two's complement notation. First we write out 28 in binary form.

0 0 0 1 1 1 0 0

Then we invert the digits. 0 becomes 1, 1 becomes 0.

1 1 1 0 0 0 1 1

http://www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html#intro
http://www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html#fromtwo
http://www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html#twotwo
http://www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html#operations
http://www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html#whyworks

Then we add 1.

1 1 1 0 0 1 0 0

That is how one would write -28 in 8 bit binary.

Conversion from Two's Complement

Use the number 0xFFFFFFFF as an example. In binary, that is:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

What can we say about this number? It's first (leftmost) bit is 1,
which means that this represents a number that is negative.
That's just the way that things are in two's complement: a leading
1 means the number is negative, a leading 0 means the number
is 0 or positive.

To see what this number is a negative of, we reverse the sign of
this number. But how to do that? The class notes say (on 3.17)
that to reverse the sign you simply invert the bits (0 goes to 1, and
1 to 0) and add one to the resulting number.

The inversion of that binary number is, obviously:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Then we add one.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

So the negative of 0xFFFFFFFF is 0x00000001, more commonly
known as 1. So 0xFFFFFFFF is -1.

Conversion to Two's Complement

Note that this works both ways. If you have -30, and want to
represent it in 2's complement, you take the binary representation
of 30:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0

Invert the digits.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1

And add one.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0

Converted back into hex, this is 0xFFFFFFE2. And indeed,
suppose you have this code:

#include <stdio.h>

int main() {
 int myInt;
 myInt = 0xFFFFFFE2;
 printf("%d\n",myInt);

 return 0;
}

That should yield an output of -30. Try it out if you like.

Arithmetic with Two's Complement

One of the nice properties of two's complement is that addition
and subtraction is made very simple. With a system like two's
complement, the circuitry for addition and subtraction can be
unified, whereas otherwise they would have to be treated as
separate operations.

In the examples in this section, I do addition and subtraction in
two's complement, but you'll notice that every time I do actual
operations with binary numbers I am always adding.

Example 1

Suppose we want to add two numbers 69 and 12 together. If
we're to use decimal, we see the sum is 81. But let's use binary
instead, since that's what the computer uses.

1 1
Carry
Row

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 1

(69)

+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0

(12)

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 1

(81)

Example 2

Now suppose we want to subtract 12 from 69. Now, 69 - 12 =
69 + (-12). To get the negative of 12 we take its binary
representation, invert, and add one.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

Invert the digits.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1

And add one.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0

The last is the binary representation for -12. As before, we'll add
the two numbers together.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Carry
Row

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 1

(69)

+ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0

(-12)

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
1 0 0 1

(57)

We result in 57, which is 69-12.

Example 3

Lastly, we'll subtract 69 from 12. Similar to our operation in
example 2, 12 - 69 = 12 + (- 69). The two's complement
representation of 69 is the following. I assume you've had enough
illustrations of inverting and adding one.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1

So we add this number to 12.
1 1 1

Carry
Row

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0

(12)

+ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
1 0 1 1

(-69)

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 1 1 1

(-57)

This results in 12 - 69 = -57, which is correct.

Why Inversion and Adding One Works

Invert and add one. Invert and add one. It works, and you may
want to know why. If you don't care, skip this, as it is hardly
essential. This is only intended for those curious as to why that
rather strange technique actually makes mathematical sense.

Inverting and adding one might sound like a stupid thing to do, but
it's actually just a mathematical shortcut of a rather
straightforward computation.

Borrowing and Subtraction

Remember the old trick we learned in first grade of "borrowing
one's" from future ten's places to perform a subtraction? You may

not, so I'll go over it. As an example, I'll do 93702 minus 58358.

 93702
- 58358

Now, then, what's the answer to this computation? We'll start at
the least significant digit, and subtract term by term. We can't
subtract 8 from 2, so we'll borrow a digit from the next most
significant place (the tens place) to make it 12 minus 8. 12 minus
8 is 4, and we note a 1 digit above the ten's column to signify that
we must remember to subtract by one on the next iteration.

 1
 93702
- 58358

 4
This next iteration is 0 minus 5, and minus 1, or 0 minus 6. Again,
we can't do 0 minus 6, so we borrow from the next most
significant figure once more to make that 10 minus 6, which is 4.

 11
 93702
- 58358

 44
This next iteration is 7 minus 3, and minus 1, or 7 minus 4. This is
3. We don't have to borrow this time.

 11
 93702
- 58358

 344
This next iteration is 3 minus 8. Again, we must borrow to make
thi 13 minus 8, or 5.

 1 11
 93702
- 58358

 5344

This next iteration is 9 minus 5, and minus 1, or 9 minus 6. This is
3. We don't have to borrow this time.

 1 11
 93702
- 58358

 35344
So 93702 minus 58358 is 35344.

Borrowing and it's Relevance to the Negative of a Number

When you want to find the negative of a number, you take the
number, and subtract it from zero. Now, suppose we're really
stupid, like a computer, and instead of simply writing a negative
sign in front of a number A when we subtract A from 0, we actually
go through the steps of subtracting A from 0.

Take the following idiotic computation of 0 minus 3:

000000
- 3

 1
000000
- 3

 7

 11
000000
- 3

 97

 111
000000
- 3

 997

 1111
000000
- 3

 9997

Et cetera, et cetera. We'd wind up with a number composed of a 7
in the one's digit, a 9 in every digit more significant than the 100's
place.

The Same in Binary

We can do more or less the same thing with binary. In this
example I use 8 bit binary numbers, but the principle is the same
for both 8 bit binary numbers (chars) and 32 bit binary numbers
(ints). I take the number 75 (in 8 bit binary that is 010010112) and
subtract that from zero.

Sometimes I am in the position where I am subtracting 1 from

zero, and also subtracting another borrowed 1 against it.

00000000
-
01001011

-

 1

00000000
-
01001011

-

1

 11

00000000
-
01001011

-

01

 111

00000000
-
01001011

-

101

 1111

00000000
-
01001011

-

0101

 11111
 00000000
- 01001011

 10101

 111111
 00000000
- 01001011

 110101

 1111111
 00000000
- 01001011

 0110101

 11111111
 00000000
- 01001011

 10110101

If we wanted we could go further, but there would be no point.
Inside of a computer the result of this computation would be
assigned to an eight bit variable, so any bits beyond the eighth
would be discarded.

With the fact that we'll simply disregard any extra digits in mind,
what difference would it make to the end result to have subtracted
01001011 from 100000000 (a one bit followed by 8 zero bits)
rather than 0? There is none. If we do that, we wind up with the
same result:

 11111111
 100000000
- 01001011

 010110101
So to find the negative of an n-bit number in a computer, subtract
the number from 0 or subtract it from 2n. In binary, this power of
two will be a one bit followed by n zero bits.

In the case of 8-bit numbers, it will answer just as well if we
subtract our number from (1 + 11111111) rather than 100000000.

 1
+ 11111111
- 01001011

In binary, when we subtract a number A from a number of all 1
bits, what we're doing is inverting the bits of A. So the subtract
operation is the equivalent of inverting the bits of the number.
Then, we add one.

So, to the computer, taking the negative of a number, that is,
subtracting a number from 0, is the same as inverting the bits and
adding one, which is where the trick comes from.

Thomas Finley 2000

