Two's Complement
Thomas Finley, April 2000

Contents and Introduction

o Contents and Introduction

o Conversion from Two's Complement

o Conversion to Two's Complement

o Arithmetic with Two's Complement

o Why Inversion and Adding One Works

Two's complement is not a complicated scheme and is not well
served by anything lengthly. Therefore, after this introduction,
which explains what two's complement is and how to use it, there
are mostly examples.

Two's complement is the way every computer | know of chooses
to represent integers. To get the two's complement negative
notation of an integer, you write out the number in binary. You
then invert the digits, and add one to the result.

Suppose we're working with 8 bit quantities (for simplicity's sake)
and suppose we want to find how -28 would be expressed in
two's complement notation. First we write out 28 in binary form.

00011100

Then we invert the digits. 0 becomes 1, 1 becomes 0.

11100011

http://www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html#intro
http://www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html#fromtwo
http://www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html#twotwo
http://www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html#operations
http://www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html#whyworks

Then we add 1.

11100100

That is how one would write -28 in 8 bit binary.

Conversion from Two's Complement

Use the number OxFFFFFFFF as an example. In binary, that is:

1111 1111 1111 1111 1111 1111 1111 1111

What can we say about this number? It's first (leftmost) bit is 1,
which means that this represents a number that is negative.
That's just the way that things are in two's complement: a leading
1 means the number is negative, a leading 0 means the number
is O or positive.

To see what this number is a negative of, we reverse the sign of
this number. But how to do that? The class notes say (on 3.17)
that to reverse the sign you simply invert the bits (0 goes to 1, and
1 to 0) and add one to the resulting number.

The inversion of that binary number is, obviously:

0000 0OOOO OOOO OOOO OOOO OOOO OOOO ©0O0OO

Then we add one.

0000 0000 OOOO 0OOOO 0OOOO OOOO O0OOOO 0001

So the negative of OXFFFFFFFF is 0x00000001, more commonly
known as 1. So OXFFFFFFFF is -1.

Conversion to Two's Complement

Note that this works both ways. If you have -30, and want to
represent it in 2's complement, you take the binary representation
of 30:

0000 0O0OOO OOOO OOOO OOOO OOOO O0OOO1 1110

Invert the digits.

1111 1111 1111 1111 1111 1111 1110 0001

And add one.

1111 1111 1111 1111 1111 1111 1110 0010

Converted back into hex, this is OxFFFFFFE2. And indeed,
suppose you have this code:

#include <stdio.h>

int main() {
int myInt;
myInt = OXFFFFFFE2;
printf("%d\n",myInt);

return 0;

That should yield an output of -30. Try it out if you like.

Arithmetic with Two's Complement

One of the nice properties of two's complement is that addition
and subtraction is made very simple. With a system like two's
complement, the circuitry for addition and subtraction can be
unified, whereas otherwise they would have to be treated as
separate operations.

In the examples in this section, | do addition and subtraction in
two's complement, but you'll notice that every time | do actual
operations with binary numbers | am always adding.

Example 1

Suppose we want to add two numbers 69 and 12 together. If
we're to use decimal, we see the sum is 81. But let's use binary
instead, since that's what the computer uses.

Carry

11 Row

0000 00OOO 0OOOO OOOO OOOO OOOO 0100
0101

+ 0000 0000 OOOO OOOO OOOO OOOO O0OOQOO
1100

(69)

(12)

0000 00O0OO OOOO OOOO OOOO OOOO 0101

0001 &V

Example 2

Now suppose we want to subtract 12 from 69. Now, 69 - 12 =
69 + (-12). To get the negative of 12 we take its binary
representation, invert, and add one.

0000 0000 OOOO 0OOOO 0OOOO OOOO 0OOO 1100

Invert the digits.

1111 1111 1111 1111 1111 1111 1111 0011

And add one.

1111 1111 1111 1111 1111 1111 1111 0100

The last is the binary representation for -12. As before, we'll add
the two numbers together.

Carry

1111 1111 1111 1111 1111 1111 1
Row

0000 00OO0OO 0OOOO OOOO OOOO OOOO 0100
0101

+ 1111 1111 1111 1111 1111 1111 1111
0100

(69)
(-12)

0000 0000 OOOO OOOO OOOO O0OOOO 0011

1001 ©7

We result in 57, which is 69-12.

Example 3

Lastly, we'll subtract 69 from 12. Similar to our operation in
example 2, 12 - 69 = 12 + (- 69). The two's complement
representation of 69 is the following. | assume you've had enough
illustrations of inverting and adding one.

1111 1111 1111 1111 1111 1111 1011 1011

So we add this number to 12.

Carry

111 Row

0000 0000 0OOOO OOOO OOOO OOOO O0O0OO
1100

+ 1111 1111 1111 1111 1111 1111 1011
1011

(12)

(-69)

1111 1111 1111 1111 1111 1111 1100

0111 (-57)

This results in 12 - 69 = -57, which is correct.

Why Inversion and Adding One Works

Invert and add one. Invert and add one. It works, and you may
want to know why. If you don't care, skip this, as it is hardly
essential. This is only intended for those curious as to why that
rather strange technique actually makes mathematical sense.

Inverting and adding one might sound like a stupid thing to do, but
it's actually just a mathematical shortcut of a rather
straightforward computation.

Borrowing and Subtraction

Remember the old trick we learned in first grade of "borrowing
one's" from future ten's places to perform a subtraction? You may

not, so I'll go over it. As an example, I'll do 93702 minus 58358.

93702
- 58358

Now, then, what's the answer to this computation? We'll start at
the least significant digit, and subtract term by term. We can't
subtract 8 from 2, so we'll borrow a digit from the next most
significant place (the tens place) to make it 12 minus 8. 12 minus
8 is 4, and we note a 1 digit above the ten's column to signify that
we must remember to subtract by one on the next iteration.

This next iteration is 0 minus 5, and minus 1, or 0 minus 6. Again,
we can't do 0 minus 6, so we borrow from the next most
significant figure once more to make that 10 minus 6, which is 4.

44
This next iteration is 7 minus 3, and minus 1, or 7 minus 4. This is
3. We don't have to borrow this time.

344
This next iteration is 3 minus 8. Again, we must borrow to make
thi 13 minus 8, or 5.

111
93702
- 58358

This next iteration is 9 minus 5, and minus 1, or 9 minus 6. This is
3. We don't have to borrow this time.

111
93702
- 58358

35344
So 93702 minus 58358 is 35344.

Borrowing and it's Relevance to the Negative of a Number

When you want to find the negative of a number, you take the
number, and subtract it from zero. Now, suppose we're really
stupid, like a computer, and instead of simply writing a negative
sign in front of a number A when we subtract A from 0, we actually
go through the steps of subtracting A from 0.

Take the following idiotic computation of 0 minus 3:

1 11 111 1111
000000 000000 000000 000000 000000
- 3 - 3 - 3 - 3 - 3
7 97 997 9997

Et cetera, et cetera. We'd wind up with a number composed of a 7

in the one's digit, a 9 in every digit more significant than the 10%s
place.

The Same in Binary

We can do more or less the same thing with binary. In this
example | use 8 bit binary numbers, but the principle is the same
for both 8 bit binary numbers (chars) and 32 bit binary numbers
(ints). | take the number 75 (in 8 bit binary that is 01001011,) and

subtract that from zero.

Sometimes | am in the position where | am subtracting 1 from

zero, and also subtracting another borrowed 1 against it.

1 11 111 1111
00000000 ?ooooooo ?ooooooo ?ooooooo ?ooooooo
otooto1r °OI900TT o 2I00IOL o AIoRIOLI o DIOOIOL
1 01 101 0101
11111 111111 1111111 11111111
00000000 00000000 00000000 00000000
- 01001011 - 01001011 - 01001011 - 01001011
10101 110101 0110101 10110101

If we wanted we could go further, but there would be no point.
Inside of a computer the result of this computation would be
assigned to an eight bit variable, so any bits beyond the eighth
would be discarded.

With the fact that we'll simply disregard any extra digits in mind,
what difference would it make to the end result to have subtracted
01001011 from 100000000 (a one bit followed by 8 zero bits)
rather than 07 There is none. If we do that, we wind up with the
same result:

11111111
100000000
- 01001011

010110101
So to find the negative of an n-bit number in a computer, subtract

the number from 0 or subtract it from 2". In binary, this power of
two will be a one bit followed by n zero bits.

In the case of 8-bit numbers, it will answer just as well if we
subtract our number from (1 + 11111111) rather than 100000000,

1
+ 11111111
- 01001011

In binary, when we subtract a number A from a number of all 1
bits, what we're doing is inverting the bits of A. So the subtract
operation is the equivalent of inverting the bits of the number.
Then, we add one.

So, to the computer, taking the negative of a number, that is,

subtracting a number from 0, is the same as inverting the bits and
adding one, which is where the trick comes from.

Thomas Finley 2000

